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A SUMMARY OF NASA DATA RELATIVE TO EXTERNAL-STORE 

SEPPARATION C H A R A C ~ I S T I Cs1 

By Linwood W. McKinney and Edward C .  Polhamus 
Langley Research Center 

SUMMARY 

The available NACA and NASA data  r e l a t i n g  t o  the  carr iage and separation 
charac te r i s t ics  of external  s to re s  are summarized, and some typ ica l  aerodynamic 
charac te r i s t ics  of s tores  i n  the  carriage posi t ion are presented. Some of t he  
subsonic interference or igins  and methods of combining experimental flow f i e l d s  
with theory t o  predict  s to re  forces  and moments a re  i l l u s t r a t e d  by a comparison 
of calculated and measured s to re  normal force and pi tching moment. The e f f ec t s  
of various combinations of speed, dive angle, a i rplane load fac tor ,  and s tore  
densi ty  on the separation charac te r i s t ics  a re  i l l u s t r a t e d  by using calculated 
s tore  t r a j ec to r i e s .  The calculated s to re  t r a j e c t o r i e s  indicate  t h a t  operational 
boundaries f o r  safe s to re  re leases  may be s igni f icant ly  affected by airplane 
speed, dive angle, and load f ac to r .  This paper includes a bibliography of NACA 
and NASA reports  r e l a t i v e  t o  t h e  re lease  of s tores  from airplanes.  

I"ODUCTI O N  

Operational experience by the  mi l i t a ry  services i n  recent years has f x u s e d  
a t ten t ion  on problems associated with the  release of various types of external  
s tores .  While a considerable amount of research r e l a t i v e  t o  the  carriage and 
re lease  of external  s tores  w a s  done by the  NACA i n  the  past, research on s tores  
during the  l a s t  10 years has been concentrated primarily i n  the  a rea  of t he  
re lease  charac te r i s t ics  of i n t e rna l ly  carr ied s tores  and t h e  e f f ec t  of external  
s tores  on a i r c r a f t  s t a b i l i t y  and performance, with some re l a t ed  work on the  
separation charac te r i s t ics  of l i f t i n g  reentry research vehicles from a c a r r i e r  
airplane.  However, i n  view of t he  current i n t e re s t  i n  t he  carr iage and re lease  
charac te r i s t ics  of external  s tores ,  it i s  believed t h a t  a summary of the ava i l 
able  NACA and NASA data  w i l l  be usefu l  t o  those engaged i n  developing and 
evaluating ana ly t ica l  methods of studying these problems. 

The purpose of t h i s  paper i s  t o  describe the  configurations which have been 
studied and the  range of var iables  covered, t o  present some typ ica l  aerodynamic 
charac te r i s t ics  of s tores  i n  the  carr iage posit ion,  and t o  i l l u s t r a t e  t h e  e f f ec t  
of these charac te r i s t ics  on the  separation charac te r i s t ics  of a s to re  under 
various del ivery conditions. A bibliography of NACA and NASA reports  r e l a t ed  
t o  the  release of s tores  from airplanes i s  a l so  included. 

. .  

IPresented a t  t he  c l a s s i f i ed  "Conference on Aircraf t  Aerodynamics," Langley 
Research Center, May 23-25, 1966, and published i n  NASA SP-124. 
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wing aspect ratio 

,lateralacceleration, feet/second2 


vertical acceleration, feet/second2 


wing span, feet 


local wing chord, feet 


wing mean aerodynamic chord, feet 


store pitching-moment coefficient referred to 0.4622, 

Store pitching moment 


qss2 


store normal-force coefficient, Store no-1 force 

qSS 

store yawing-moment coefficient referred to 0.4622, 

Store yawing moment 


9ss2 

pressure.coefficient 


store side-force coefficient, Store side force 

qss 

equivalent airspeed, knots 


moment of inertia about Y axis, slug-feet2 


moment of inertia about Z axis, slug-feet2 


store incidence angle relative to wing reference line, degrees 


radius of gyration, feet 


store length, feet 


Mach number 


airplane incremental load factor, referred to steady equilibrium 

flight conditions 


dynamic pressure, pounds/foot2 


airplane wing area, feet2 


store reference area, maximum frontal area of body, feet2 




wing thickness r a t i o  

a i rplane w e i g h t ,  pounds 

WS s to re  w e i g h t ,  pounds 

w/s airplane wing loading, pounds/f oot2 

a, angle of a t tack  of airplane wing, degrees 

7 dive (fl ight-path) angle, degrees 

h t aper  r a t i o  

w 4  wing sweep of quarter-chord l ine,  degrees 

CONFIGURATIONS STUDIED 

The major portion of the  wind-tunnel s tudies  f o r  wing-pylon-store conf'igu
ra t ions  which a re  applicable t o  the  current problem area u t i l i z e d  one of t h e  two 
tes t  methods shown i n  figure 1. The top sketch i l l u s t r a t e s  the  method i n  which 
the  aerodynamic forces  and moments of t he  s tore  i n  the  carriage posi t ion are 
measured by m e a n s  of a strain-gage balance mounted within the  s to re  and attached 
t o  the  wing pylon. D a t a  obtained by t h i s  method can be used t o  determine the  
s tore  carr iage loads and t h e  i n i t i a l  separation charac te r i s t ics  of t h e  s tore .  
The lower sketch i l l u s t r a t e s  t he  method i n  which t h e  s tore  i s  supported by a 
s t i n g  through an i n t e r n a l  strain-gage balance. In  addition t o  providing car
r iage loads, t he  sting-support method allows the  s tore  t o  be t e s t ed  a t  various 
posi t ions and a t t i t udes  r e l a t i v e  t o  t h e  airplane and thereby provides s to re  
aerodynamic data  which can be used t o  compute both the  release and the  t r a j ec 
t o r y  charac te r i s t ics  o f  the  s tore .  

Comparisons between computed t r a j e c t o r i e s  using aerodynamic data  obtained 
by t h i s  technique and t r a j ec to ry  measurements made i n  f l i g h t  and with free-fall 
techniques are given i n  references 1and 2, respectively,  and indicate  a satis
factory agreement. 

The use of f r e e - f a l l  and forced-ejection methods by NASA has been directed 
primarily toward e jec t ion  from bomb bays ra ther  than the release of external  
s tores ,  and w i l l  not be discussed here. However, a bibliography of t h i s  work i s  
included. It should a l so  be pointed out t h a t  problems associated with scal ing 
(refs .  3 t o  6) and simulation of release conditions, such as dive angle, tend t o  
l i m i t  the  usefulness of the free-fall and forced-ejection methods. The configu
ra t ions  studied by the  techniques shown i n  f igure  1are described i n  f igures  2 
and 3.  The configurations studied by the  pylon-support method are shown i n  f i g 
ure 2, and the  configurations studied by the  sting-support method are shown i n  
f igure 3 .  A bottom view of t h e  airplane i s  shown and the  various s to re s  t e s t ed  
are shown i n  the  carriage posit ion.  The a l t e rna te  location of t he  s to re  i s  
shown by the  dotted outline.  The t ab le s  under the  sketches l ist  some of t he  
per t inent  geometric charac te r i s t ics  of t he  wings, t h e  Mach number ranges of t h e  
test ,  the f a c i l i t y  used, t h e  reference containing t h e  data  of t he  more important 
variables studled, and the  type of da ta  obtained. 
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Wing planforms cover the sweep range from 0' to 47' and include a 60° 
delta wing. Aspect ratios from 4 to 7.7were covered. The Mach numbers 
ranged from approximately 0 to 2.01. Both finned and unfinned stores have 
been investigated. In general, the configurations studied are representative 
of rather large stores primarily because the balances required for the smaller 
stores were not available. Five-component force data are available for con
figurations 1 to 5; pressure distributions on the stores were measured for con
figurations 6 to 8; for configuration 8, complete wing pressure distributions 
were measured without the store-and with the store in two vertical locations. 
Five-component force data have also been obtained on configurations 9 to 12, 
and for the supersonic studies on configurations ll and 12 store force data 
have been obtained for a large number of positions within the shaded area for 
several vertical store locations. For the subsonic studies (configurations 13 
and 14), the local angularities in both the longitudinal and lateral planes and 
the local flow velocities were measured at various vertical locations beneath 
the wing and fuselage for the range of spanwise and chordwise locations indi
cated by the dashed line for the unswept wing and the shaded area for the swept 
wing. These configurations are similar to two of those used to measure store 
force data and therefore are useful not only in evaluating flow-field theories 
but also in evaluating methods of predicting store forces. 

TYPICAL AERODYNAMIC CHARACTERISTICS 


Inasmuch as the current operational problems are primarily associated with 

subsonic deliveries, the remainder of this paper will deal with the subsonic 

case. 


Configuration 5 was chosen tcr illustrate some typical aerodynamic charac

teristics of a store in the carriage position and to show the effects of deliv

ery conditions on release characteristics and is presented in figure 4. The 

pertinent geometric characteristics of the wing and the location of the store 

beneath the wing are indicated. This configuration was selected because of its 

similarity to configuration 14, for which complete flow-field surveys were 

available. 


Before presenting the various aerodynamic characteristics of the store, a 
somewhat detailed look at the store normal-force and pitching-moment character
istics w i l l  be made to illustrate the order of magnitude of the various flow-
field induced effects and to indicate the effectiveness of simplified theory 
for predicting the store forces and moments. The calculations are based on the 
application of the measured flow field (ref. 7)to body-fin theory and ignore 
the mutual interference effects between the wing and store. Figure 5 shows a 
comparison of the calculated and measured store normal-force coefficient with 
wing angle of attack for the body, the fins, and the body-fin combination. For 
the body alone it w i l l  be noted that the calculated buoyancy effect (shown by the 
short-dash line) associated with the wing-body-induced static-pressure gradient 
is rather Large and produces a negative normal-force-curve slope and a large 
positive n o m 1  force at a, = Oo. The positive force at a, = 00 is, of 
course, associated with the wing-thickness-induced buoyancy and w i l l  increase 
with increasing wing-thickness ratio. The wing for this case was 6 percent thick. 
The effect of' the flow angularity on the body (indicated as the local a effect) 
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includes both the induced-angle-of-attackand induced-camber effects determined 
by the,methodof reference 8with the crossflow-separation effects accounted 
for by the method of reference 9. The sum of the buoyancy and local a effects 
shown by the solid line indicates a positive value of normal force at + = 00 
and is in fairly good agreement with the experimental data. The estimate of the 
fin increment accounting for the local angle-of-attack distribution, shown by 
the solid line in the lower left of figure 5, indicates a slope of about one-
half of that predicted for the isolated fins and reasonably good agreement with 
experiment. The reduction in slope is, of course,,associated with the wing
lift-induced dmwash characteristics while the positive normal force at 
% = Oo is due to the thickness-induced upwash. The results for the body-fin 
combination, shown at the lower right of figure 7, also indicate fairly good 
agreement with the experiment. 

The calculated and measured pitching-moment coef-ficientsfor the body, 
the fins, and the body-fin combination are shown in figure 6 as functions of 
wing angle of attack. The methods used were the same as those previously
described in connection with the normal force. For the body alone, the buoy
ancy effect gives a stabilizing moment whereas the local angle-of-attack effect 
calculated by the methods of references 8 and 9 gives an unstable slope. The 
sum of the buoyancy and local-angle-of-attack effect is shown by the solid line 
and indicates the same slope as the experiment over most of the angle-of-attack 
range; however, the magnitude of body pitching moment predicted is considerably
higher. The estimate for the fin accounting for the local-angle-of-attack 
effect and shown on the lower left of figure 6 sh&s reasonable agreement at 
the lower values of c+; however, at the higher value of a, this agreement
deteriorates. The discrepancies between the calculated and experimental values 
of pitching-moment coefficient for both the body and the fin are additive so 
that the estimate for the body-fin combination gives, in general, poor agree
ment with the experiment. This figure serves to point out the need for more 
sophisticated theories to predict the store pitching-moment characteristics in 
the interference flow field. 

Experimentally obtained aerodynamic characteristics for the example config
uration (configuration 5) at a Mach number of 0.50 are shown in figure 7. The 
normal-force and pitching-moment curves are the same curves that were discussed 
on the two preceding figures and are presented here for completeness. In the 
lateral plane, a positive value of side-force coefficient (CY), indicating a 
force toward the fuselage, is obtained at a, = Oo. A s  a, is increased, a 
change in sign of Cy occurs. The significant point to be noted about the 
yawing moment is that the lateral center of pressure lies ahead of the store 
center of gravity for the complete wing angle-of-attack range shown and, as a 
result, the nose of the store w i l l  be yawed in the direction of the side force. 
Figure 8further illustrates the change in sign of side force with angle of 
attack by means of experimental store pressure distrfbutions measured on con
figuration 8 at % = 00 and % = 8O. The pressure distribution on the iso
lated store is also shown for reference. Note that, at &w = Oo, high negative 
pressures are acting on the inboard side of the store whereas at a, = 8 O  high 
positive pressures are obtained on the inboard side of the store. While con

figuration 8 differs considerably from configuration 5 these results illustrate 
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the general type of pressure distributions associated with the large variation 
in force characteristics measured on configuration 5. 

SEPARATION CEKRACTERISTICS 


Since all the curves shown in figure 7 are displaced at a, = Oo, and, in 
the lateral case, change sign with wing angle of attack, airspeed would be 

expected to have a large influence on the forces developed on the store at 

release. The effect of the aerodynamic forces on the initial store trajectory 

is, of course, highly dependent on the mass and inertial characteristics of the 

store. Therefore, the analysis presented in the remainder of this paper is 

intended only to show characteristic trends. To illustrate the order of magni

tude of the effect of the forces shown in figure 7 on the initial store trajec

tory, the linear accelerations acting on the store at release are shown in fig
ure 9 for the example configuration using Iy = Iz = 2342 slug-ft2. 

On the left of figure 9, the effect of equivalent airspeed on the vertical 
acceleration at the store fin for a store at is = Oo relative to the wing 
chord line, is shown for store weights of 180 and 960pounds. The vertical 
acceleration at the store nose at is = -7O is also shown as a function of air
speed for store weights of 180 and 960 pounds. A s  indicated by the arrows, 
positive acceleration is toward the airplane wing. The points on the store for 
which the acceleration is shown are the most critical points f r o m  contact con
sideration when both the store normal force and pitching moment are accounted 
for. The weights were taken to represent near minimum and maximum weights for 
this class of store. The wing angle-of-attack variation used in the calculation 
corresponds to the angle of attack required for steady level flight of the car
rier airplane at a wing loading of 100 lb/ft2 over the speed range and therefore 
decreases with increasing speed. For a wing loading of 100 lb/ft2, this config
uration gives an airplane weight of 18650 pounds. For the lightweight store at 
is = Oo the fin accelerates toward the wing and this acceleration increases 
rapidly with airspeed, and results, of course, from the buoyancy effect at 

= Oo. When the store is mounted with -50 incidence relative to the wing, the 
normal force at aw = 00 is negative and this trend is reversed; that is, as 
speed is increased and store weight reduced, the store is accelerated away from 
the wing at a faster rate. The curves on the right of the figure show that, as 
speed is increased, the lateral acceleration changes f r o m  an acceleration away 
from the fuselage to an acceleration toward the fuselage, as indicated by the 
variation d CY and Cn with wing angle of attack in figure 7. 

To account for the effect of dive angle on the store separation character
istics, a three-degree-of-freedomsystem of motion equations was used to calcu
late store trajectories in the longitudinal plane. This effect of dive angle is 
illustrated in figure 10 for a 960-pound store released at 530 knots. On the 
left of figure 10 calculated trajectories are shown at a dive angle y of Oo 
for initial store incidence angles of Oo and -?O, and on the right of the figure 
at a dive angle of 7 5 O  also for initial store incidence angles af 00 and -5O. 
At zero dive angle the weight of the store is essentially normal to the aircraft 
reference and the initial acceleration corresponds to that shown in figure 9by 
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t h e  dashed l i n e  at  530 knots. When the s to re  i s  released, contact does not 
occur. For a dive angle of approximately 75O the normal w e i g h t  component i s  
reduced by the  cosine of the  dive angle and a component of the weight goes i n t o  
thrust  which accelerates the  s tore  r e l a t ive  t o  the  ca r r i e r  airplane. Since the 
s to re  normal-force curves are displaced at % = Oo, t he  reduction i n  s tore  
normal force resu l t ing  frm the  change i n  required t o  maintain steady 
f l i g h t  on the 75O f l i g h t  path i s  insignif icant  re ' la t ive t o  the  reduction of t he  
gravity component. As a result, f o r  i s  = Oo, the  s tore  normal force approxi
mately equals i t s  normal weight component and the  nose-down pi tch rotat ion com
bined with the forward acceleration of the  s tore  relative t o  the  airplane causes 
the  s tore  f i n  t o  contact t he  t r a i l i n g  edge of the  wing. However, at  i s  = -5O, 

contact i s  not indicated. Although the  dive ang le . a t  which contact is  shown f o r  
t h i s  s tore  is  large,  a s tore  having smaller values of IY or larger  f i n s  o r  
located beneath a thicker  wing section, where the  buoyancy ef fec t  would b e  
greater  would be expected t o  contact the wing a t  lower dive angles. 

The r e su l t s  of the  calculated t r a j ec to r i e s  f o r  the example configuration 
a t  is = Oo are summarized i n  f igure ll. The l i n e s  or boundaries on the l e f t  
of the f igure represent the  maximum dive angle f o r  re lease of a 960-pound s tore  
without contact between the f i n  and airplane wing as a function of equivalent 
airspeed, under conditions of steady f l i g h t  and imposed incremental load fac
t o r s  of -0.25 and -0.5. Contact i s  indicated on the hatched side of the  bound
ary. The dashed l i n e  shows the boundary obtained if compressibility e f f ec t s  
are neglected. (The compressibility e f fec ts  a r e  based on sea-level conditions. )
For the store-airplane configuration i l l u s t r a t e d  here, the reduction i n  s to re  
normal force and increase i n  drag associated wlth the higher Mach n d b e r s  opens 
the  boundaries at  the  higher airspeeds. D a t a  obtained on airplanes during 
at tack missions indicate  tha t ,  at  t h e  ins tan t  of' ordnance release, the ai rplane 
i s  qui te  often i n  a pushover. For cer ta in  delivery techniques, a pushover i s  
required t o  of fse t  the  horizontal  dr i f t  associated with increases i n  speed 
during a dive. Figure ll indicates t h a t  severe penal t ies  i n  both maximum per
missible dive angle and f l ight  speed may be encountered if the s tore  i s  released 
during a pushover. 

On the  r igh t  of the f igure  the  e f fec t  of s tore  weight on contact at re lease 
i s  shown, with a constant radius of gyration, as a function of equivalent air
speed f o r  f l ight-path angles of 00 and 600. The boundaries indicate the mini
mum weight a t  which the  s to re  can be released without contact over the  speed 
range f o r  the two dive angles. In this figure contact i s  indicated below the  
boundary. 

CONCLUDING REMARKS 

The available NACA and NASA data  r e l a t ing  t o  the carriage and separation 
character is t ics  of external  s tores  have been summarized. A comparison of cal
culated and measured s tore  normal force and pi tching moment has been presented 
t o  i l l u s t r a t e  some of the subsonic interference or igins  and methods of combining 
experimental flow f i e l d s  with theory t o  predict  s to re  forces and moments. This 
colnparison indicates t h a t  addi t ional  work i s  required t o  develop completely 
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. II 

satisfactory analytical methods of obtaining store moments in the interference 
flow field. Therefore, at present it appears that the best method is to measure 
the store characteristics in the wind tunnel. When the aerodynamic character
istics of a store in the wing flow field are known, the store trajectaries can 
be calculated with reasanable accuracy. The effects of various combinations of 
speed, dive angle, airplane load factor, and store density on the separation 
characteristics are illustrated by using calculated store trajectories. The 
calculated store-trajectories indicate that operational boundaries for safe 
store releases may be significantly affected by airplane speed, dive angle, and 
load factor. 
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EXAMPLE CONFIGURATION 
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